nükleer enerji

Nükleer Enerji Santrali Nedir?

Nükleer enerji santralları, kömürle çalışan termik santrallardan pek farklı değildir. Ter­mik santrallarda kömür yakılarak su kaynatı­lır, böylece elde edilen buhar gücüyle bir türbin döndürülür ve türbin elektrik üretir. Nükleer enerji santrallarında ise, gerekli ısı atomların bir reaktörde bölünmesiyle üretilir.
Reaktör Tipleri. Kullanılabilir miktarda enerji üreten ilk reaktörler 1950'lerde İngilte­re'deki Calder Hall'da kuruldu. Bu reaktörler aslında askeri amaçla plütonyum üretmek ve nükleer enerji konusunda deneyim kazanmak için kurulmuştu; bunlarda elektrik üretimine 1956'da başlandı. Bu reaktörlerin yavaşlatıcı­ları, Fermi'nin reaktöründe olduğu gibi grafit­ti; yakıt olarak, magnezyum alaşımından bir kap içine yerleştirilmiş doğal uranyum metali kullanılıyor ve sistem basınçlı karbon dioksitle soğutuluyordu. Tepkime sırasında oluşan ısıyı emen karbon dioksit bunu ısı değiştirici­lerine taşıyor ve ısı burada, elektrik üretmeye yarayan türbo-alternatörleri çalıştıracak bu­harı elde etmek için kullanılıyordu. Bu reak­törlere "magnox" tipi reaktör denirdi; daha sonra bunların benzeri başka reaktörler yapıl­dı ve Geliştirilmiş Gaz Soğutmalı Reaktör (AGR) tipi ortaya çıktı.


 

1950'lerin başlarında ABD'li bilimciler, denizaltılarda güç kaynağı olarak kullanılmak üzere küçük reaktörler geliştirme çabasına giriştiler. ABD'li yetkililerin elinde çok mik­tarda zenginleştirilmiş uranyum (U-235 oranı artırılmış uranyum) vardı; yavaşlatıcı olarak da grafit yerine su kullanmayı düşündüler. Aslında su nötronları soğurur, yani içinde tutar ve zincirleme tepkimeyi sürdürmeye yarayan nötronların sayıca azalmasına neden olur; ama nötronları yavaşlatmakta grafitten daha etkilidir. Denizaltılar için küçük reak­törler yapmayı başaran ABD'li bilimciler daha sonra, ucuz elektrik üretebilecek bir reaktör geliştirmenin yollarını aramaya başla­dılar. Bu çalışmaların sonucunda iki ana reaktör tipi tasarımı geliştirildi: Basınçlı Su Soğutmalı Reaktör (PWR) ve Kaynar Sulu Reaktör (BWR).
PWR tipi reaktörlerde yakıt olarak, yakla­şık yüzde 3 oranında U-235 içerecek biçimde zenginleştirilmiş ve özel alaşımdan yapılmış bir kutu içine yerleştirilmiş uranyum dioksit kullanılır. Yavaşlatıcı ve soğutucu olarak da sudan yararlanılır. Pompalanan su önce reak­törde dolaştırılır, sonra ısı değiştiricisine akta­rılır; reaktörde ısınan su, ısı değiştiricisindeki ikinci bir su devresinde buhara dönüştürülür ve bu buhar elektrik üreten türbinleri çalıştı­rır. BWR tipi reaktörde, reaktörün "kalp" bölümü, yani zincirleme tepkimenin oluştuğu bölüm PWR'ninkiyle aynıdır; ama bunlarda ikinci bir su sistemi yoktur ve reaktörün soğutma devresinden çıkan buhar doğrudan türbinlere beslenir. Nükleer enerji üretmekte olan ülkelerin pek çoğunda PWR ya da BWR tipi reaktörler kullanılır.
Reaktörün İçi. Modern nükleer reaktörler­de, yakıt elemanları olan uranyum çubukları reaktörün içine demetler halinde yerleştirilir. Çubuklar kafes biçiminde düzenlenir; böylece soğutma sıvısı ya da gazının bunların arasın­dan akarak ısıyı emmesi ve taşıması sağlanır. Yakıt elemanlarının arasındaki kanallara, ko­layca nötron soğurabilen ve böylece zincirle­me tepkimeleri durdurabilen bir maddeden (örneğin bordan) yapılmış "denetim" çubuk­ları yerleştirilir. Bu çubuklar bulundukları kanallarda yükseltilip alçaltılarak enerji üre­tim miktarı denetim altında tutulabilir. Bütün yakıt elemanları ve denetim çubukları yavaş­latıcı olarak kullanılan malzemeye gömülmüş durumdadır. Yavaşlatıcı olarak grafit, su ya da ağır su (bir hidrojen izotopu olan döter-yum bakımından zengin su) kullanılabilir. Reaktörün bu kalp bölümü, çekirdek bölün­mesi sırasında ortaya çıkan ışınımın (radyas­yonun) dışarı sızmasını engellemek amacıyla çok kalın bir beton ya da çelik kalkanla çevrilidir.
"Hızlı" Reaktörler. Her uranyum çekirdek
bölünmesi tepkimesinde iki ya da üç nötron serbest kalır. Oysa zincirleme çekirdek bölün­mesi tepkimesini sürdürebilmek için bunlar­dan yalnızca birine gerek vardır ve sonuçta çok sayıda nötron "yedek" olarak kalır. Ye­deklerden bazıları kaçar; ama bunlar reaktör kalkanı, yavaşlatıcı ve çekirdeği bölünemeyen U-238 tarafından tutulur. Geriye kalanlar da denetim çubuklarıyla "temizlenir".
Daha önce açıklandığı gibi, U-238'de tutu­lan nötronlar bu uranyum izotopunun çekir­deği bölünebilir plütonyuma dönüşmesine ne­den olur. Plütonyum bir atık değil, potansiyel değeri U-235'inkinden daha büyük olan bir yakıttır. Oluşan plütonyumun bir bölümü, ısıl (yani ısı üreten, termik) reaktörlerde çekir­dek bölünmesine uğrar; ama kalanı, kullanıl­mış yakıtın yeniden işlenmesi sırasında ayrılıp geri kazanılabilir. Ayrılan bu plütonyum taze yakıt çubukları haline getirilebilir ve "hızlı" reaktörlerde kullanılabilir. Bu tür reaktörle­rin yavaşlatıcıları olmadığı için, bunlarda nöt­ronların yavaşlatılması söz konusu değildir. Ama plütonyum çok tehlikeli bir maddedir ve taşınırken büyük özen gösterilmesi gerekir.
Hızlı reaktörlerde aynı miktar uranyumla, "konvansiyonel" ısıl reaktörlerdekine oranla 50-60 kat daha fazla enerji üretilebilir. Hızlı reaktörlerde, ısıl nükleer reaktörlerden bir yan ürün olarak çıkan plütonyum yakılabildi-ği gibi, çekirdeği bölünebilir olmayan ve ısıl reaktörlerce "yakılamayan" U-238 de plüton­yuma dönüştürülebilir; bu nedenle bu tip reaktöre hızlı üretken reaktör de denir.
İlk ticari amaçlı hızlı reaktör Fransa'nın güneybatısındaki Creys-Malville'de kuruldu; Super Phénix (Süper Anka) adı verilen bu reaktörde soğutucu olarak sıvı sodyum kulla­nılmaktadır. SSCB ve İngiltere'de de elektrik enerjisi üreten hızlı üretken reaktörler vardır.
 
Bugün 1 ziyaretçi (3 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol